

Material 72 NBR 902

blue

cross linking: sulfur

revision index 7	revision date 4/23/2012		page	1/3
Physical properties		required	actual	
Density DIN EN ISO 1183-1		1.43 ±0.02	1.43	g/cm³
Hardness DIN ISO 7619-1		75 ±5	75	Shore
Rebound resilence DIN 53512			26	%
Modulus 100 %, DIN 53504, S2		> 4	7.2	MPa
Tensile strength DIN 53504, S2		> 10	13.8	MPa
Elongation at break DIN 53504, S2		> 300	360	%
Compression set DIN ISO 815, 22 h, 100 °C		< 40	30	%
Low Temperature DIN 53765, nach DSC			-29	°C

Material 72 NBR 902

blue

cross linking: sulfur

revision index revision date

7 4/23/2012 page 2/3

Tested after ASTM D 2000: M 2 BG 710 EA14 EF11 EF21 EO14 EO34 Z1

		required	actual
Hardness	Shore	70 ±5	75
Tensile strength	MPa	min. 10	13.8
Elongation at break	%	min. 250	360
Change after aging in Air 70h/100°C			
Hardness	Shore A		4
Tensile strength	%		10
Elongation at break	%		-11
EA14 Change after aging in Distilled water 70h/100°C			
Hardness	Shore A	±10	3
Volume	%	±15	5
EF11 Change after aging in Fuel A 70h/23°C			
Hardness	Shore A	±10	-1
Tensile strength	%	-25	-5
Elongation at break	%	-25	-10
Volume	%	-5 to 10	2
EF21 Change after aging in Fuel B 70h/23°C			
Hardness	Shore A	0 to -30	-12
Tensile strength	%	-60	-28
Elongation at break	%	-60	-43
Volume	%	0 to 40	28
EO14 Change after aging in IRM 901 70h/100°C			
Hardness	Shore A	-5 to 10	5
Tensile strength	%	-25	9
Elongation at break	%	-45	-20
Volume	%	-10 to 5	-5
EO34 Change after aging in IRM 903 70h/100°C			
Hardness	Shore A	-10 to 5	-3

Material 72 NBR 902

blue

cross linking: sulfur

revision index	revision date				
7	4/23/2012			page	3/3
Tensile strength		%	-45		-8
Elongation at brea	ak	%	-45		-18
Volume		%	0 to 25		8
Z1 Low Tempera	ature DIN 3761 Teil15		°C		-29

Temperature-range: - 40 °C to 100 °C

Preferred area of applications: Radial Shaft Seals.

Very good resistance in motor oil based on mineral oil

Compliant with the EU-directives 2011/65/EC (RoHS) and 2002/95/EC (RoHS).

Attention!

In synthetic oils (polyalkylene-glycols / polyalphaolefins) please consider that the max. working temperature mustn't exceed 80 $^{\circ}$ C

The given values are based on a limited number of tests on standard test pieces (2mm sheets) produced in the laboratory. The data from finished parts can deviate from above values depending on the manufactories process and the component geometry.

The data represents our present empirical values. It is incumbent on the person placing the order to examine whether it is suitable for its intended purpose, before using the product. All questions regarding the guarantee of this product are in line with our terms and conditions, inasmuch as statutory provisons do not plan for something else.

